Anomaly Detection in Images using Deep Encoder-Decoder Models

Amin Fadaeinejad !

Abstract

The detection of anomalous structures in image
data is one of the most important applications
is the field of machine vision. We are going to
use a unsupervised method in order to detect the
defected and defect-free pixels in a image. We
will also do a comparison between different model
parameters to show how they will effect the result.
In the manufacturing industry, for example, if
there is a product that has a fault in it, it must be
recognized or else it will cause future problems
for the company, therefore, it is very crucial for
such systems to exist in order to prevent things
from happening.

1. Introduction & Background

Humans have shown great performance in detecting anoma-
lous and abnormality in images, however, it seems that
anomaly detection is a hard task for machine learning sys-
tems. There are many relevant applications that rely on
unsupervised algorithms that are able to detect anomalous
regions in images. In the following, we will give an expla-
nation for the things we are about to discuss. While this
classification on an image level is important, it is unclear
how current state-of-the-art methods perform on what we
call anomaly detection tasks. The problem set is to find nov-
elties in images that are very close to the training data and
differ only in subtle deviations in possibly very small, con-
fined regions. Clearly, to develop machine learning models
for such and other challenging scenarios we require suitable
data. Curiously, there is a lack of comprehensive real-world
data-sets available for such scenarios. Large-scale data-sets
have led to incredible advances in many areas of computer
vision in the last few years.

"Department of Electrical Engineering and Computer Science,
York University, Toronto, Canada. Correspondence to: Amin
Fadaeinejad <afadaei@yorku.ca>.

1.1. Anomaly Detection

Anomaly detection is also known as out-layer analysis is a
step-in data mining that identifies data points, events, and
observations that deviate from a data set’s normal behaviour.
Anomalies our out-layers are data points within the data sets
that appear to deviate markedly from expected outputs. It is
the process of finding patterns in data that do not conform
to prior expected behaviour. Anomaly detection is being
employed more increasingly in the presence of big data
that is captured by sensors, social media platforms, huge
networks, etc. They also have many applications including
energy systems, medical devices, banking network intrusion
detection, etc. Machine learning is progressively being used
to automate anomaly detection.

1.2. Auto-Encoders

Auto Encoder is a generative unsupervised deep learning
algorithm used for reconstructing high-dimensional input
data using a neural network with a narrow bottleneck layer in
the middle that contains the latent representation of the input
data. Auto-Encoders have two main parts called, Encoder
and Decoder.

* Encoder: Accepts high-dimensional input data and
translates it to latent low-dimensional data. The input
size to an Encoder network is larger than its output
size.

* Decoder: The Decoder network receives the input from
the Encoder coder’s output. The decoder’s objective
is to reconstruct the input data. The output size of a
Decoder network is larger than its input size.

In brief works, we can say that the Auto-encoders accepts
high-dimensional input data, compresses it down to the
latent-space representation in the bottleneck hidden layer;
the Decoder takes the latent representation of the data as an
input to reconstruct the original input data.

Machine learning is progressively being used to automate
anomaly detection. There are several applications for Auto-
Encoders such as Anomaly Detection, Dimensionality Re-
duction, Recommendation Engines, Denoising Images, Im-
age recognition and, Image generation.

Rectangle

Rectangle

Submission and Formatting Instructions for ICML 2020

Ttz a2
/ Hs2 1152 /

/ / Tt L

,) lo wz

d - 3

_,[| _{_, ﬂ?

Y comv3 N Reshape

/. Conv2 strida=2 DeConv3
/. sides2 siride=2

Fatten FC

Convl
stride=2

DeConvl
stride=2

Figure 1. Network Architecture of a Auto-Encoder, from (Dertat,
2017)

1.3. Accuracy methods

In order to be able to compare our result with the results that
are already published be need to have a standard accuracy
method. First off we need to know the concept of True and
Predicted conditions. Two types of correct predictions (True
Positives and True Negatives), and there are two types of
errors. Error Type I for any observation predicted positive
when actually it is negative (False Positive, also called False
Alert). Error Type II for any observation predicted negative
when actually it is positive (False Negative).

True condition

Total

Condition positive Condition negative

population

Predicted

condition

Predicted positve
condition Predicted
condition

negative

False positive,

True positive
Type | error

False negative,

True negative
Type Il error

Figure 2. Definition of every parameter, from (Maiza, 2019)

According the figure 2 we have an understanding towards
True Positive, True Negative, False Positive and False Neg-
ative. Based on that, it is common to analyze four metrics
which are:

. TP
PTeczszon . 1—'P—|—7F’P (1)
TP
frecall s 75 TN @
TP+ TN
Accuracy : + 3)

TP+FP+FN+TN

But because Precision and Recall usually play against each
other, we may rely on their harmonic mean which is the
F1-score.

_ 2 _ 2Recall Precision
" Recall=' + Precision=' Recall + Precisioz

Fy

Now that we have a clear understanding towards the accu-
racy metrics we can show the result in the next parts of this
report.

2. Related Works (literature reviews)

There are several methods including supervised and unsuper-
vised for detecting anomalies. The work of (Paul Bergmann,
January 2021) is a great work for this field and it is also
our implementation to use their data-set and why using a
network is a bit different from theirs. The landscape of meth-
ods for unsupervised anomaly detection is diverse and many
approaches have been suggested to tackle the problem (An
& Cho., 2015) (I. Goodfellow & Courville., 2016). Other
than that there are other methods such as:

2.1. Generative Adversarial Networks (GANs)

(T. Schlegl, Springer, 2017) propose to model the mani-
fold of the training data by a generative adversarial network
(GAN) (I. Goodfellow & Bengio., 2014) that is trained
solely on defect-free images. The generator is able to pro-
duce realistic-looking images that fool a simultaneously
trained discriminator network in an adversarial way. For
anomaly detection, the algorithm searches for a latent sam-
ple that reproduces a given input image and manages to
fool the discriminator. An anomaly segmentation can be
obtained by a per-pixel comparison of the reconstructed
image with the original input.

2.2. Deep Convolutional Autoencoders

Convolutional Autoencoders (CAEs)(I. Goodfellow &
Courville., 2016) are commonly used as a base architecture
in unsupervised anomaly detection settings. They attempt
to reconstruct defect-free training samples through a bottle-
neck (latent space). During testing, they fail to reproduce
images that differ from the data that was observed during
training. Anomalies are detected by a per-pixel comparison
of the input with its reconstruction. Recently, (P. Bergmann,
2019) pointed out the disadvantages of per-pixel loss func-
tions in autoencoding frameworks when used in anomaly
segmentation scenarios and proposed to incorporate spatial
information of local patch regions using structural similarity
(Z. Wang & Simoncelli., 2004) for improved segmentation
results.

3. Resources (Software and Data)
3.1. Hardware

For training deep neural network model using CPU is a
bad option since in training you are doing many small com-
putations for each node in a parallel way it is best to use
GPUs for training. For our project we used a free Google

Submission and Formatting Instructions for ICML 2020

Colab account which several users have access to a 12GB
NVIDIA Tesla K80 GPU that can be used up to 12 hours
continuously.

3.2. Data Set

For our project, we used the MVTec data-set that belonged
to (Paul Bergmann, January 2021), this data set contained
several different groups of images such as Bottles, Ca-
bles, Capsule, Carpet, Grid, Hazelnut, Leather, Metal Nut,
Pill, Screw, Tile, Toothbrush, Transistor, Wood and Zipper.
Which for our project due to the limitation we were able to
only train one of the data sets. We used the Hazelnut data-
set which contained 390 defect-free images. Deep neural
networks are known for their impressive accuracy when they
are trained with a very large data set, therefore we used data
augmentation to increase the number of data samples that
we have. We used methods suck as rotation, flipping and
adding noise to increase the number of data samples. In the
end, we had approximately 2000 images. There are 70 test
images which different types such as crack, cut, hole and
print. The data-set also includes ground Truth to calculate
the accuracy of the testing.

~d

Figure 3. Hazelnut test images with their ground truth is MVTec
data-set, from left to right: crack, cut, hole and paint

4. Network Architect

Our model contained several convolution layers. For the
model we also used Batch-Normalization with 0.1 momen-
tum and € = 10~%. For the activation function we used the
LeakyReLU with negative slop 0.01.

4.1. Encoder

For the model architect refer to Table 1.

4.2. Decoder

For the model architect refer to Table 2.

Table 1. In the table "IN” refers to the input size, "OUT” refers
to the output size, ’KERNEL” refers to the size of the kernel and
”STRIDE” refers to the value of the stride

LAYER TYPE IN OuT KERNEL STRIDE
Conv2D 3 3 4 2
BATCHNORM2D 3

LEAKYRELU

CoNv2D 3 32 4 2
BATCHNORM2D 32

LEAKYRELU

Conv2D 32 32 4 2
BATCHNORM2D 32

LEAKYRELU

Conv2D 32 32 3 1
BATCHNORM2D 32

LEAKYRELU

Conv2D 32 64 4 2
BATCHNORM2D 64

LEAKYRELU

Conv2D 64 64 3 1
BATCHNORM2D 64

LEAKYRELU

Conv2D 64 128 4 2
BATCHNORM2D 128

LEAKYRELU

Conv2D 128 64 3 1
BATCHNORM2D 64

LEAKYRELU

Conv2D 64 32 3 1
BATCHNORM2D 32

LEAKYRELU

Conv2D 32 500 8 1

BATCHNORM2D 500

5. Experiments
5.1. Training

Just like any other network, we need to train the model in
order to get a good performance from it. We used the L2
Loss of training. Where z; is the input image and &; is the
generated image.

1 n
Loss = — E i — 24 5
085 nl [|z; — 4] 5)

F1 metric is one of the metrics that is proper for calculat-
ing pixel accuracy or segmentation tasks. Figures 5 6 7 8
represent the F1 accuracy for different test images. (For the
accuracy we assumed 7 = (.2).

5.2. Outputs

We used the algorithm to detect the defect in the testing
images and for every data-set we represented a result.

Submission and Formatting Instructions for ICML 2020

Table 2. In the table "IN” refers to the input size, "OUT” refers 010
to the output size, ’KERNEL” refers to the size of the kernel and
”STRIDE” refers to the value of the stride 0.08
£ 006
LAYER TYPE IN Our KERNEL STRIDE E
CONVTRANSPOSE2D 500 32 8 1 2 004
BATCHNORM2D 32
LEAKYRELU 0.02
CONVTRANSPOSE2D 32 64 3 1 \," "
BATCHNORM2D 64 0.00 .
LEAKYRELU 0 10000 20000 30000 40000 50000 60000
CONVTRANSPOSE2D 64 128 3 1 number steps
BATCHNORM2D 128
LEAKYRELU . ..
CONVTRANSPOSE2D 128 64 4 2 Figure 4. Training loss
BATCHNORM2D 64
LEAKYRELU
CONVTRANSPOSE2D 64 64 3 1 0.350
BATCHNORM2D 64 0325
LEAKYRELU 0.300
CONVTRANSPOSE2D 64 32 4 2 L 0375
BATCHNORM2D 32 B
LEAKYRELU o 020
CONVTRANSPOSE2D 64 128 4 2 0.225
BATCHNORM2D 128 0.200
LEAKYRELU 0175
CONVTRANSPOSE2D 128 64 3 1 0150
BATCHNORM2D 64 5w a0 0 w0 1000
LEAKYRELU Epochs
CONVTRANSPOSE2D 64 32 4 2
EEAii};NRgE%ZD 32 Figure 5. F1 Accuracy for crack data
CONVTRANSPOSE2D 32 32 3 1
BATCHNORM2D 32
LEAKYRELU 07
CONVTRANSPOSE2D 32 32 4 2
BATCHNORM2D 32 06
LEAKYRELU
CONVTRANSPOSE2D 32 3 4 2 505
BATCHNORM2D 3 o
LEAKYRELU o4
CONVTRANSPOSE2D 3 3 4 2 03
SIGMOID
02
EI) 2(50 460 6(50 B-[sﬂ 1060
Epochs
5.3. Print
For print we used 7 = 0.2, figures 9 show the result. Figure 6. F1 Accuracy for cut data
5.4. Crack
6. Methodology
For crack we used 7 = 0.2, figures 10 show the result.
6.1. Method
5.5. Cut We are going to train our network in order to reconstruct

the input image from the latent space the way that we do
that is that we feed many normal images to the network so
the network will learn the features of normal and defect-
free images because the latent space is smaller than the
For hole we used 7 = 0.25, figures 12 show the result. size of the image, the network learns the important part of

For cut we used 7 = 0.2, figures 11 show the result.

5.6. Hole

Submission and Formatting Instructions for ICML 2020

F1 Hole

0 200 400 600 800 1000
Epochs

Figure 7. F1 Accuracy for hole data

F1 Print

o 200 400 500 800 1000
Epochs

Figure 8. F1 Accuracy for print data

0

50
Pk y

100

150

200

250

0
50
~ 00
50
200
50
0 50 100 150 200 250 0 50 100 150 200 250
o
50
100
150
200
250
0 0 50 100 150 200 250
Figure 9. Print Example, Top left: Input, Top right: Output, Bot-
tom left: Predicted defect pixels, Bottom right: Ground Truth

bl

1

2

]

100
150

200

the image, after that since it has learned the important part
whenever it sees a new image it will try to use the things it

0

100

150

200

50 100 150 200 250

Figure 10. Crack Example, Top left: Input, Top right: Output,
Bottom left: Predicted defect pixels, Bottom right: Ground Truth

0 0
50
100

150

200

Figure 11. Cut Example, Top left: Input, Top right: Output, Bot-
tom left: Predicted defect pixels, Bottom right: Ground Truth

learned to construct the image and since a defected image
has a problem it will have a high constructed error and by
that, we find the defected pixels.

* Training:
Input normal data to learn latent representation (En-
coder) Use the latent representation to reconstruct the
first image (Decoder)

e Testing:

Submission and Formatting Instructions for ICML 2020

Figure 12. Hole Example, Top left: Input, Top right: Output, Bot-
tom left: Predicted defect pixels, Bottom right: Ground Truth

An image with defect will have a different output com-
pared to normal, hence error will be high Apply a
threshold for the reconstruction error to detect the er-
TOor.

6.2. Algorithms

For the testing part in order to detect the defected pixels we
need to use a specifies algorithm.

By using algorithm 1 we can construct an image that shows
which pixels have fraud in them. In 5.2 we will see the
result of this algorithm.

7. Discussions
7.1. Effect of Threshold

As we mentioned in 5.2, the output depends on parameter
7, which in this part we are going to show the effect of
changing this value. In figures 13 and 14 the effect of the
threshold can be seen. If the value of the threshold is too
high (for example 7 = 0.7 in figure 14) the system will
miss some pixels that were in fact defected pixels, therefore
the F1 accuracy will decrease. If the value of the threshold
is too low (for example 7 = 0.1 in figure 14) the system
will assume that the defect-free pixels are also defected, in
this case the F1 will decrease as well since there is a large
number of pixels that do not contain defected pixels but the
system will predict it anyway.

Algorithm 1 Defect Detection
Input: image(RGB) x;, number data m, Threshold 7

repeat
for i = 1tomdo
& < f(xi)

D« ||Z; — i
E < max(D) over channel (Converting 3D(RGB)
channel to 1D channel)
for n,k in range of images height and width do
if £, > 7 then
Eor+1
end if
if £, < 7 then
FEa. <0
end if
end for
show E' as the output
end for
until All images are done

Figure 13. Left: Ground Truth, Right: Test image

] 0

50 50

100 100
150 150
2200 200

20 250

150 2200 250 0 S 100 150 200 250 0 50 100 150 200 250

Figure 14. Left: 7 = 0.7, Middle: 7 = 0.2, Right: 7 = 0.1

7.2. Effect of Latent Space size

In our model and result, the dimension of the latent space
was 500, however, this is a hyper-parameter that we could
change. Changing this parameter will cause effects on the
output. As we mentioned in 1 Decoder’s objective is to
reconstruct the input data from the output of the Encoder. If
the size latent space is too small then the model will face
difficulties to learn small details since it has less power to
learn the model, therefore in some cases, it might predict
some pixels have defected while they are completely defect-
free. If we assume that the latent space is too small in

Submission and Formatting Instructions for ICML 2020

that case the model will start to memorize the input image
instead of learning the image features, the model might
construct an image that has defective parts since it has a lot
of parameters it has the capacity to pass the small details as
well, this might lead to a situation that the model is not able
to detect the defected pixels in an image since the model will
construct an image that has those parts due to its capacity.

8. Conclusions

In the last part we are going to compare our result with other
methods and approaches that are out there.

Table 3. The Methods accuracy

METHODS RECALL PRECISION F1

OUR METHOD (PRINT) 0.22 0.82 0.35
OUR METHOD (CRACK) 0.26 0.57 0.36
OUR METHOD (CUT) 0.69 0.8 0.57
OUR METHOD (HOLE) 0.55 0.61 0.75
AE(SSIM) 0.08 1 0.15
AE(L2) 0.84 0.93 0.88
ANOGAN 0.16 0.83 0.27
CNN FEATURE DICTIONARY 0.07 0.90 0.13

We compared our approach with some of the models that
are already used and it seems (Paul Bergmann, January
2021) has the best performance when they train their model
on a L2 loss function. But it seems that our approach is
good since we outperform other methods such as AnoGANS,
Auto Encoders using SSIM and CNN feature Dictionary.
However, our approach has a lower accuracy in all 3 metrics
(Recall, Precision and F1) compared to the state-of-the-art
method. In one special case, the AE approach with the
SSIM loss function was able to reach 100 % for precision,
however, they were not able to have a good performance of
the Recall, therefor according to our F1 metric, our approach
outperforms the AE(SSIM) approach.

References

An, J. and Cho., S. Variational autoencoder based anomaly
detection using reconstruction probability. Technical re-
port, SNU Data Mining Center;, 2015.

Dertat, A. Applied deep learning - part 3: Autoencoders.
Technical report, 2017.

I. Goodfellow, J. Pouget-Abadie, M. M. B. X. D. W.-F. S.
0. A. C. and Bengio., Y. Generative adversarial nets.
In Advances in Neural Information Processing Systems,,
2014.

I. Goodfellow, Y. B. and Courville., A. Deep learning. MIT
Press, Cambridge, MA,, 2016.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Maiza, A. The unknown benefits of using a soft-f1 loss in
classification systems. Technical report, 2019.

P. Bergmann, S. Lowe, M. F. D. S. C. S. Improving unsuper-
vised defect segmentation by applying structural similar-
ity to autoencoders. 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications,, 2019.

Paul Bergmann, Kilian Batzner, M. F. D. S. C. S. A com-
prehensive real-world dataset for unsupervised anomaly
detection;. International Journal of Computer Vision,
January 2021.

T. Schlegl, P. Seebock, S. M. W. U. S.-E. G. L. Unsupervised
anomaly detection with generative adversarial networks
to guide marker discovery. International Conference on
Information Processing in Medical Imaging,, Springer,
2017.

Z. Wang, A. C. Bovik, H. R. S. and Simoncelli., E. P. Image
quality assessment: from error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing,, 2004.

