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Figure 1: Sample of the CycleGAN results from the original paper

ABSTRACT
Image to image translation is one of the tasks in deep learning that
has gotten a lot of attention in the deep learning and computer
vision community. However in the more traditional approaches
there most be labeled images for corresponding images, e.g for
every image from domain 𝐴 there must be an image 𝐵 in the other
domain. However in the approach that Jun-Yan Zhu et el [12] take
they did not need the corresponding images from the two domain.
In the paper they described the two different domains in various
ways, in their paper the main two domains were Horse/Zebras, in
other cases there were some domains such as Monet/Photo, Sum-
mer/Winter and Image/Segmentation. In our reproducing challenge
we are going reproduce the Image/Segmentation domain, it is also
interesting since Mondal et al[8] did use the CycleGAN for seg-
mentation task. Image segmentation is one of the fields in deep
learning that there has been a lot of work done, therefor it will be
interesting to see how this method will work for it. In this report at
first we are going to cover the main contribution of these paper and
what they exactly did to make image translation without paired
data possible. After we are going to cover the experiments that we
have done by the authors. In the end we will discuss if the paper
was reproducible or not.
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1 INTRODUCTION
In this paper [12] they represent a method for learning to translate
an image from source domain 𝑋 to a target domain 𝑌 , in the ab-
sence of of paired images. They are trying to find a transformation
function 𝐺 that 𝐺 : 𝑋 → 𝑌 , in the case where 𝐺 (𝑋 ) and 𝑌 have
same distribution. They also find the inverse function 𝐹 that will
do the exact opposite. Function 𝐹 : 𝑌 → 𝑋 will find the a transfor-
mation that will convert domain 𝑌 to domain 𝑋 . In addition they
introduced a cycle consistency loss where this loss tries to push
𝐹 (𝐺 (𝑋 )) = 𝑋 .

1.1 Paired Data
In image to image translation tasks one important thing is the need
of paired data, figure 2 show an example of paired data. How ever
there are limited number of data sets that have paired data. But
CycleGAN introduces a new method that could to the image-to-
image translation task without paired data. So technically this is
going to be great boost in the field of image-to-image translation.

1.2 Adversarial training
In this project as mentioned before we are going to do the image
translation between an image and the segmentation of that image.
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Figure 2: Paired data

To fully understand the entire model and how it works we are
going to cover all the sections of the model. Figure 3 shows the

Figure 3: CycleGAN model scheme

entire model, where we indicate that domain 𝑋 is the real-image,
domain 𝑌 is the segmentation domain. Model 𝐺 is a generator
where is converts images from domain 𝑋 to domain 𝑌 , in other
words𝐺 : 𝑋 → 𝑌 . Model 𝐹 is a generator where is converts images
from domain 𝑌 to domain 𝑋 , in other words 𝐹 : 𝑌 → 𝑋 . There
are also two discriminators where their objective is to detect if the
input image is a real image of a fake. Discriminators 𝐷𝑋 will detect
if the ground image (the real image from the scene) is real or not.
Discriminators 𝐷𝑌 will detect if the segmentation is real or not.

1.3 Cycle Consistency
Adversarial training can, in theory learn mappings 𝐺 and 𝐹 that
produce outputs identically distributed as target domains 𝑌 and 𝑋
respectively.However, with large enough capacity, a network can
map the same set of input images to any random permutation of
images in the target domain, where any of the learnedmappings can
induce an output distribution that matches the target distribution.
Thus, adversarial losses alone cannot guarantee that the learned
function can map an individual input 𝑥𝑖 to a desired output 𝑦𝑖 . To
further reduce the space of possible mapping functions, we argue
that the learned mapping functions should be cycle-consistent.

Figure 4 shows the concept of cycle consistency, in this (cycle
consistency) approach, after applying generator 𝐺 to an image, we
will also apply the function 𝐹 which is going to convert 𝐺 (𝑋 ) back
to domain 𝑌 . The overall goal is to make 𝑋 and 𝐹 (𝐺 (𝑋 )) as close
as possible. We also the same thing in the reverse way, where the
goal is to make 𝑌 and 𝐺 (𝐹 (𝑌 )) as close as possible.

Figure 4: Cycle Consistency

1.4 Identity loss
Other than the two methods that we just mentioned there is also
one additional loss that they used to train their model. If we apply
generator 𝐺 to an image that is in domain 𝑋 we expect it to stay
in the same domain, which means 𝐺 (𝑋 ) = 𝑋 . The opposite should
also work as well, which means if we apply generator 𝐹 to an image
from domain 𝑌 is should still remain in domain 𝑌 . Figure 5 shows
this concept.

1.5 Full Objective
The final loss function should look something like this:

L(𝐺, 𝐹, 𝐷𝑥 , 𝐷𝑦) = L𝐺𝐴𝑁 (𝐺, 𝐷𝑦, 𝑋,𝑌 ) + L𝐺𝐴𝑁 (𝐹, 𝐷𝑥 , 𝑋,𝑌 )

+_𝐶𝑦𝑐𝑙𝑒L(𝐺, 𝐹 ) + _𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦L𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝐺, 𝐹 )

1.6 Data set
Depending on the two different domains that they were using there
are different data set that they used. However for our task which
is segmentation they used the cityscapes, which we also used the
same thing in our own implementation in order to reproduce the
same results.
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Figure 5: Identity function

Figure 6: Sample Images of data set

1.7 Network Architecture
In thier implementation they used Johnson et al [4] model, since
in Johnson et al were able to achieve impressive results for neural
style transfer and super resolution. Their network contains three
convolutions, several residual blocks [1] two fractionally-strided
convolutions with stride 1

2 , and one convolution that maps features
to RGB. They use 6 blocks for 128 × 128 images and 9 blocks for
256×256 and higher-resolution training images. They also used
instance normalization in their model [11]. For the discriminator
networks they used 70 × 70 PatchGANs [3, 6, 7] which aims to
classify whether 70 × 70 overlapping image patches are real or fake.

1.8 Training Details
They trained their model from scratch (with using a pre-trained
model), with a learning rate of 0.0002. They devided the objective
(loss) by 2 while optimizing 𝐷 , which slows down the rate at which
𝐷 learns, relative to the rate of 𝐺 . They kept the same learning
rate for the first 100 epochs and linearly decay the rate to zero
over the next 100 epochs. Weights are initialized from a Gaussian
distribution N(0, 0.02).

2 EXPERIMENTS & RESULTS
We trained our model over the cityscapes dataset. The dataset that
we used had 2975 real images and also 2975 segmentation images.
We also were using the Google Colab Server to train our model on

its GPU’s, however since we were using the GPU for a few days,
the google colab limitations did not let us to use it much longer.
However we had multiple google accounts and used others instead.
The hyper-parameters such as batch-size, learning rate, etc, were
all used from the paper itself.

In order to reproduce their results we did two different tasks
to reproduce their result, one was Cycle Consistency Loss Only,
where we assumed _𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 0, in the Cycle Consistency Loss +
Identity Loss part we assumed _𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = _𝐶𝑦𝑐𝑙𝑒

Figure 7 shows discriminator loss for the ground image and the
segmentation. However since we were using limited resources out
google account will run out of RAM, therefore we were only able
to show the loss for the first 66 epochs. Other than the discrimina-
tor loss we plotted the Cycle Consistency loss (figure 8) and the
generators loss (figure 9) As you could see in all cases the loss is
dropping however the way that they are dropping is a bit different.

Figure 7: Discriminator loss

Figure 8: Cycle Consistency loss

Figure 9: Generator loss

2.1 Cycle Consistency Loss Only
We trained our model for 200 epochs, figure 10 shows the accuracy
of the Discriminator, where it shows the percentage of correct
guesses for the discriminator for detecting real ground images of
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Figure 10: Discriminator Accuracy

fake ground images. Out result and output was quite reasonable
however due to limited resources we had, we were not able to train
the entire model with full potential. The results were not bad, the
performance for generating ground images was better. Figure 11
shows the result of out CycleGAN after 200 epochs of training
without applying the identity loss. Figure

Figure 11: Generated Ground image (without identity)

Figure 12: Generated Segmentation (without identity)

2.2 Cycle Consistency Loss + Identity Loss
Since we had limit access to Google Colab servers instead of just re-
training our model, we used the weights from the previous model
(the model with no Identity loss), then we fine tuned the model

with the new hyper-parameters. The only difference in the two
hyper-parameters is that in the case we used the identity loss,
parameter _𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 was not 0 and was the same value as _𝐶𝑦𝑐𝑙𝑒 .
We trained our model for another 70 epochs and the figure 13 shows
the accuracy of the model during training. This accuracy shows
the number of times in total the model has detected if the image
was real or fake. Since we were fine tuning the model the first 200
epochs are the same as in figure 10. The final result from fine tuning
the model is in figures 14 and 15. We can see the great improvement
in the ground image result in figure 14. Meanwhile the result for the
segmentation model in figure 15 did not show much improvement.

Figure 13: Discriminator Accuracy

Figure 14: Generated Ground image (with identity)

We also wanted to reproduce table 2 in paper [12] however since
the result from the segementation model was a RGB image we were
not able to categorize each pixel to each class, therefore we were
not able to reproduce that part. In order to solve that part we need
a complete description of how they converted a RGB image to a
catagorzied image so that each pixel will correspond to a class.

3 DISCUSSION
To sum up the result we got from this project, we were not able
to get the exact same numbers and outputs, however the results
were quite acceptable. The images from the paper and the one
from our result may not 100% match but we could assume that

2023-01-05 19:28. Page 4 of 1–6.
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Figure 15: Generated Segmentation (with identity)

if we trained for a longer amount of time we might have gotten
the same result. By looking at the generated images we could see
that the models performance over generated ground images are
quite well, but of course not as good as the main images. For the
generated segmentation images the results were not as good as the
ground images, one thing that we need to consider is that every
color in the segmentation image is going to represent a particular
class, however what the CycleGAN model is seeing is a normal
image and it will treat the image the same way and that is why the
segmentation results are not categorized. Since the segmentation
output is not categorized(the output was just a RGB image) we
were not able to fully reconstruct that part, the reason could be
that there wasn’t enough information about segmentation process.
In the paper [12] we were going to reproduce table 2, but due the
reasons that I just mentioned about the segmentation we were not
able to calculate the table since there was no clear approach on how
to map a RGB image to a category (such as roads, trees, cars, etc).
It is also interesting since in the paper [12] in one figure (look at
figure 16) the result they have when they used Cycle Alone is quite
similar to the result that we have gotten in our implementation,
however their final result is better than ours.

Figure 16: Generated Segmentation (with identity)

4 DETAILS
For the Video of the project you could go tomy youtube channel and
watch it there (link), since the video was 300 MB, I was not able to

upload it one Eclass, therefor I mentioned my youtube link. For the
project details, I used two Google Colab accounts so I could train my
model. Python notebooks are not easy to commit on git since each
time you need to download them first, then you need to commit
on git. Here my Google Colab links if you want to ensure that the
project was conducted at a reasonable pace. First account Second
Account, there are other Google colab codes here and here. Since
when the network is training we were not able to run anything else,
we needed to use multiple notebooks to hangle them all. In one case
we were getting the accuracy of the model but since the Run time
ended we weren’t able to save the accuracy therefor we just copy
pasted the numbers (which was frusterating task). . However there
are some sorted python files in my repository (I tried to format
them is a correct and standard way), however, they are same code
in my google colab. GitHub Repository
Also great thanks to internet blogs [10] and youtube videos [2, 5, 9]
that helped me to understand the details of the paper.
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Figure 17: Some other Samples of our result
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