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Abstract 

 

In this Homework we were going to implement neural network using the Pytorch 

framework this means that there is no need to do the numerical computation by our own we 

can easily implement layers for the network and after that we are going to train out models 

for a particular result. The first model is used to detect the position of the human joints by 

using a small dataset. In the second question of the Homework we used an auto-encoder to 

detect the fault of an image and we used a hazelnut dataset for this reason and tried different 

models for this part to see which works best. 
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Question 1 
We are going to use the dataset mentioned containing 2000 images of sport athletes and a 

matrix file which has 14 joints of the human body and every joint has 2 values one for the 𝑥 

value and the other one is for 𝑦 value of the image the second thing we need to do is no resize 

the images because the image dataset has images with different sizes and we cannot give 

inputs with different sizes to the network because the structure of the network is designed for 

a certain data size in every layer of the model, so in this case we resize the image dataset there 

is also a need to change the values of the joints position because that value was computed by 

the image and by resizing the image we need to change that value as well and indeed we do 

that as well. According to the paper mentioned as Deep pos we need to normalize the joints 

so there value will be between -0.5 , 0.5 for both 𝑥, 𝑦 values. 

Assume 𝑦 = (… , 𝑦𝑖
𝑇 , … )𝑇 , 𝑖 ∈ 𝑃 = {1,2, … , 𝑘} and after that we are using a transform 

assuming 𝑏 = (𝑏𝑐, 𝑏𝑤, 𝑏ℎ), 𝑏𝑐 ∈ ℝ
2, 𝑏𝑤, 𝑏ℎ ∈ ℝ and the transform is like 𝑒𝑞1 

𝑁(𝑦𝑖; 𝑏) =

(

 

1

𝑏𝑤
 0

0
1

𝑏ℎ)

 (𝑦𝑖 − 𝑏𝑐) 

Transform from 𝑒𝑞1 will make the center of the image map at (0, 0) of the joints and the 

bounds are between -0.5 to 0.5 and the loss function is L2 norm 

 

Figure 1 AlexNet 

In Figure 1 we can see the AlexNet which the Deep neural network that we are going to 

use in this question has a similar structure which has a good performance on image data. 

We also got help from a Git repository and the link in mentioned in the references but is 

wasn’t used completely only a small part was needed to get the idea about how this DNN 

works. 
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Part 1) The first part we designed a DNN as it was mentioned in the paper and after that 

we used the Adam algorithm for solving the optimization problem of this network. 

 

Adam algorithm is like the following equations assuming that 𝑔𝑡 is the gradient of the loss 

function in the 𝑖th step: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

We also need to normalize the two terms: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡          𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 

And at last in the weight updating: 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚𝑡̂

√𝑣𝑡 + 𝜖
 

Where 𝜖 is a small number in case the standard deviation is zero. 

This results are from using Adam optimizer for 50 epochs with learning rate 0.00005 as 

said in the paper and we used drop-out as well with the probability of 0.6. 

 

Figure 2 

Figure 2 shows the loss for training data as it is expected it decreases by number of step 

we have about 50 epochs but we are using batches of size 128 so in this case we are going to 

have 50 × [
1400

128
] steps in it. 
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Figure 3 

Figure 3 shows the loss for the validation dataset as we can see the result maybe the train 

loss decreases but the loss for the validation dataset will decrease at first but after a while it 

will start to increase which with using the early stop algorithm we know that we should stop 

at that point because the model is memorizing the data and the model is over fitting. 

 

 

Figure 4 

Figure 4 shows the loss for the number of epochs that we have passes and we can see that 

result for it similar to the loss for the validation dataset so that’s one of the reasons that we 

use early stop algorithm to find the best place to stop training and by the look at the validation 

loss graph we can predict that the best epoch is about epoch 8 or 9. 
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The following we are going to show the result of PCP and the PDJ: 

The PCP (Percentage of Correct Parts) is this way we are going to find the size of a 

particular limb and we use the main data for this part and the next part we need to calculate 

the distance between the true location of the limb and the predicted location of the limb and 

if it is less than half of the limb true size then we state this prediction as a true and it is more 

we say it predicted wrong and in this case we have 3 figures to show this parameter. 

 

Figure 5 

In figure 5 we can see the result for the batches that the parameter is increasing and it is 

getting near 100% which we can assign as an over fit state. 

 

Figure 6 

Figure 6 shows the PCP parameter for validation dataset and we can see at most it will 

reach about 33% and that is not a good number to reach but we can see that it will reach a 

better point in epochs number 32 and this means that the loss that showed the minimum result 

is in epoch 8 it does not really matter. 
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Figure 7 

In the figure 7 we can see the same result in the previous part that it will reach a maximum 

number of 30% accuracy which is not a good number and in this case it is like validation 

dataset. 

The PDJ (Percent of Detected Joints) in this accuracy parameter we need to calculate the 

torso diameter which according to the paper it is the distance between the true and predicted 

position of a joint must be in a fraction of torso diameter. The torso diameter is the distance 

between the right hip and the left shoulder and in this question the fraction that we have chosen 

for this distance was 0.5 

The figures below will show this parameter in the passing epochs. 

 

Figure 8 

Figure 8 show the PDJ for the training dataset and like the PCP parameter it will increase 

until it reaches 100% accuracy for this it is obvious that the model is over fitting the reason 

can be seen in the two validation and test dataset result in computing this parameter. 
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Figure 9 

Figure 9 shows the PDJ parameter for the model on the validation dataset and we can see 

that the PDJ will increase at first but after a while it while it will start to decrease because the 

model is over fitting to the train data and that is not god 

 

 

Figure 10 

Figure 10 has the same result as figure 9 that the PDJ parameter will decrease at the 

beginning and after a while it will start to decrease which means is memorizing the train data 

it is best to see the model in 8th epoch. 

Now we are going to show some results for the image and what is happened to it after that 

we have used the model. 

At first we show the Test images of the dataset. 
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Figure 11 Test Dataset 

 

 

Figure 1211 Test Dataset 

Figures 11 and 12 are the result for the joint detection for the test data as we can see we 

don’t have much accuracy the reason for that is that we don’t have much data for our dataset 

and that means it we train it for a long amount of epochs the network will start to memorize 

the data instead of trying to learn the pattern of the data and generalizing the images we can 

see figure 13 and 14 that we gave the train data at have a very good performance that means 

that the network had memorized the images and result the joints that it already know and that 

isn’t good overall. 
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Figure 12 

 

Figure 13 Train Dataset 

So as a result it can be figured out that the model with 7 layers of convolutional and fully 

connected layers have enough parameters to memorize the training dataset and the loss of 

them and the PCP and PDJ parameters show the same in the graphs. 
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Part 2) In this part we are going to use Augment data but in our project we were using 

google Colab and we have a limited cloud memory and we can’t augment all data’s in the 

dataset will all the ways possible we used methods like rotation in clock wise and counter 

clock wise direction and scaling the image and adding noise and blur to the image we need to 

know that if we add a rotation to the image we need to change the joints as well because in 

the rotation the location of the joints will change and we are doing this in order to improve 

the model so in this case we need to change the joints as well but there is no need to change 

the joints for adding noise or blur to the image in the scaling we need to scale the joints as 

well, one cool thing we have learned from in dada augmentation is that flipping is not a good 

option for this augmentation because when you flip an image the position of the joints will 

not change the way we expect because in the flip operation to change the locations of the 

joints it really doesn’t just flip the joints the picture will still stay the same as they were so in 

this case we only use rotation and scaling  and noise and blur to the image (noise and blur 

doesn’t affect the position of the joints) 

We expect to have a better accuracy because we are using more data than before and we 

are using noise and rotation and scaling in order make this data’s  

 

 

Figure 14 

Figure 15 shows the loss for the training data and as we can expect the loss decreases by 

time but this maybe cause overfitting which we need to investigate in the next part 

We can also see in figure 16 and 17 that the loss of the model decreases at first but still 

after a while the loss starts to increase and yes that is where the model starts to over fit it is in 

a higher number of epochs but still it happens and we can still see in the results 
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Figure 15 

 

Figure 16 

In the next step we are going to plot the PCP parameter for this model for the 3 dataset 

train validation, test 

 

Figure 17 
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Figure 18 

 

Figure 19 

Figure 19 and 20 is for validation and the test dataset that we have used and as we expected 

it will increase and reach a certain point which it can’t improve from that point beyond. 

Now we are going to compare the PDJ parameters for different datasets. 

 

Figure 20 
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In figure 21 we can see the result is like parameter PCP and it reaches 100% but as we said 

before it is obvious that the model is overfitting again. 

 

Figure 21 

 

Figure 22 

We can see the again in figure that it will reach a certain point. 

 

Figure 24 Test Dataset 
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Figure 25 Test Dataset 

In figure 24 and 25 are the result for the new improved dataset hasn’t changed much but 

still in improved a bit because of the small dataset that we are using and because of the small 

memory we have on google Colab gave us on GPU we can’t use the full potential of the data 

augmentation because of that but still the images, loss and the two accuracy parameters PCP 

and PDJ show it has improved a bit and we hope that if we had more data like as it was 

mentioned on the paper they used two dataset for train as mentioned FLIC with 5000 train 

images and 1000 test images and LSP dataset with 11000 images for sure we have got a better 

performance over there but of course we need a better GPU with a lot more memory to handle 

this kind of datasets. 

 

Figure 26 Train dataset 
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Figure 27 Train dataset 

In figure 26 and 27 that the network still has memorized the training data but it done a 

better generalization for the new test data. 

 

Figure 28 

Figure 28 shows that the model is so over fitted even though we rotated the image we can 
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Part 3) In this part we need to add extra structures to the networks model the previous part 

of the question we just build the initial stage of the model in the next stage we are going to 

implement the S stage of the model. 

S stage: This model works in a 𝑠 = {1,2, … , 𝑘} sequence after the initial stage we are going 

to make a bounding box around the estimated joint and the size of the bounding box in about 

the length of the torso of the body which we mentioned in the previous part of the question 

and after making the new bounding box of the image we need to scale the joints again and 

after that we send the image and the joints to the network again and we need to find a better 

location for this joint again and what we have done in this case we predict that joints again 

and tried to minimize the loss of the distance of that joint and the real joint of its bounding 

box and we do that with all the 14 joints of the body and we done the same thing that was 

mentioned in the paper, but there has a problem due to the google Colab storage that we have 

we can’t use it for all the training data instead we used it over 100 of our data because when 

we used it the Colabratory gave us an error that we used all the limited memory in the GPU 

so we have problems with the accuracy of course and we can’t do anything with it but still we 

show the implementation on the model and the result the loss graph and the PCP and the PDJ 

result it might not have a good result but there is the point that we didn’t have much train data 

and the result isn’t that good on the result. 

 

Figure 29 

Figure 29 belongs to the 𝐷𝑒𝑒𝑝 𝑝𝑜𝑠 paper that in mentioned in the references and we are 

going to show some of the results for our network 
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Figure 30 

 

Figure 31 

Figure 30 and 31 show the lost function for the model we added a new term to the model 

in order to solve the next step of the network. 

 

Figure 32 

Figure 32 shows the result PCP parameter for the training data and the validation dataset 
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Figure 33 

Figure shows the PDJ parameter for the new model we can see for train it reaches 100% at 

last. 

 

Figure 34 

Figure 34 shows the result of the model for one sample image we can see we haven’t done 

much good in it might have a lots of reasons like not having enough data and we were using 

some extra data and we only trained this model on a small dataset in order of 100 images and 

of course we can’t expect. For that image we are going to show all the 14 bounding boxes that 

the model has faced. 
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Figure 35 

 

Figure 36 

 

Figure 37 

 

Figure 38 



21 

 

 

Figure 39 

Figures 35 36 37 38 39 are the frames that has been used to make this image and they are 

the bounding box of the 14 joints that we have we can see some of them are for a particular 

joint but 2 of them are not showing anything useful. 

 

Figure 40 

 

Figure 41 
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Figure 42 

In figures 34 40 41 42 we can see the result for the model when we use a S stage model 

and as the result it didn’t perform quite well but it is still good with the small datasets that we 

used. 

 

Question 2 
In this question we are using auto encoders in order to retain a fault image when we 

mention fault in an image it may have cracks, cuts, holes or paintings on it and we are going 

to use this structure to find the errors in the image. 

How does an auto-encoder work, is starts with encoder which reduce the dimension of the 

space that it is for example the input is a 128 × 128 × 3 image and the bottle neck of the 

structure has 100 neurons. 

 

Figure 43 

Figure 43 shows an example of what auto-encoders can do by feeding the network with 

tons and tons of data it will start to learn the patterns of the input image and this will help in 

different ways like when we feed the network with a fault image because in the bottle neck of 

the network was small number of neuron which means we can represent the output image 
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with a small number of features and we will train the network with good images and then if 

we gave them an image will a crack in it because of the small number of features it has we 

expect to see the image without fault in the output, it’s because of the space that we are in that 

space has less number of features and the network must learn how to squeeze the input data 

and convert it to a loss dimensional vector and after that it tries to convert that low dimensional 

vector to a output image and it must be similar to the input as possible. 

 

 

Figure 44 

Figure 44 shows the structure of the auto-encoder and the way it looks it can we seen that 

the dimension of the space in the bottle neck is quite smaller than the input and output 

dimension, in the following we are going to use different type of layers to see the accuracy 

and effect in the output. 

 Part 1) In the first one we are going to 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 activation function and sigmoid 

function of the last layer. We used batch size 32 and got this result in the following. 
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Figure 45 

Figure 45 show the loss for the 

For the accuracy we are using 3 methods 

𝑀𝑒𝑡ℎ𝑜𝑑1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚(𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙)

𝑛𝑢𝑚(𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙𝑠)
 

𝑀𝑒𝑡ℎ𝑜𝑑2 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚(𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙)

𝑛𝑢𝑚(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙𝑠)
 

𝑀𝑒𝑡ℎ𝑜𝑑3 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚(𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 == 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑝𝑖𝑥𝑒𝑙)

𝑛𝑢𝑚( 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠)
 

Part 1) We are going to use the sigmoid function on the last layer of the network 

 

 

Figure 46 
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Figure 46 shows the loss of the model we can see that as we expect the loss is decreasing 

by epochs and because we are using batches the number of steps is 
𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑆𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧
× 𝐸𝑝𝑜𝑐ℎ𝑠 that 

why we see a lot of steps in it. 

 

Figure 47 

 

Figure 48 

 

Figure 49 

Figure 47 48 49 shows the 3 accuracy that we have and we mentioned every method for 

the accuracy. The accuracy is for the crack dataset. 
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Figure 50 

 

Figure 51 

 

Figure 52 

Figures 50 51 52 show the accuracy of the model for the 3 methods that we mentioned, we 

used the cut dataset  



27 

 

 

Figure 53 

 

Figure 54 

 

Figure 55 

Figures 53 54 55 show the accuracy of the model for the 3 methods that we mentioned, we 

used the hole dataset 
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Figure 56 

 

Figure 57 

 

Figure 58 

Figure 56 57 58 shows the accuracy with the 3 different methods for the print dataset. 
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This graphs were for the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1 and the next 3 part we are going to use the same 

but we can see the result with different images. 

Crack: 

 

Figure 59 

Figures 59 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 60 

Figure 60 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 61 

 

Figure 62 

Figure 61 62 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 62% 47% 33% 17% 

Method2 30% 58% 82% 100% 

Methdo3 87% 93% 94% 94% 
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Cut: 

 

Figure 63 

Figures 63 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 64 

Figure 64 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 65 

 

Figure 66 

Figure 65 66 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 77% 68% 52% 21% 

Method2 10% 30% 62% 100% 

Methdo3 91% 97% 99% 99% 
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Hole: 

 

Figure 67 

Figures 67 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 68 

Figure 68 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 69 

 

Figure 70 

Figure 69 70 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 79% 69% 60% 21% 

Method2 10% 22% 44% 100% 

Methdo3 94% 98% 99% 99% 
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Print: 

 

Figure 71 

Figures 71 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 72 

 

Figure 72 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 73 

 

Figure 74 

Figure 73 74 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 78% 66% 62% 21% 

Method2 13% 17% 25% 100% 

Methdo3 83% 89% 93% 99% 
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Part 2) In this part we are adding a batch normalization to our model 

 

Figure 75 

Figure 75 shows the loss of the model we can see that as we expect the loss is decreasing 

by epochs and because we are using batches the number of steps is 
𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑆𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧
× 𝐸𝑝𝑜𝑐ℎ𝑠 that 

why we see a lot of steps in it. 

 

Figure 76 
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Figure 77 

 

Figure 78 

Figure 76 77 78 shows the 3 accuracy that we have and we mentioned every method for 

the accuracy. The accuracy is for the crack dataset. 
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 Figure 79 

 

Figure 80 

 

Figure 81 
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Figures 79 80 81 show the accuracy of the model for the 3 methods that we mentioned, we 

used the cut dataset  

 

Figure 82 

 

Figure 83 

 

Figure 84 
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Figures 82 83 84 show the accuracy of the model for the 3 methods that we mentioned, we 

used the hole dataset 

 

Figure 85 

 

Figure 86 

 

Figure 87 
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Figure 85 86 87 shows the accuracy with the 3 different methods for the print dataset. 

Crack: 

 

Figure 88 

Figures 88 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 89 

Figure 89 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 90 

 

Figure 91 

Figure 90 91 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 61% 44% 32% 17% 

Method2 38% 60% 82% 100% 

Methdo3 90% 94% 95% 94% 
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Cut: 

 

Figure 92 

Figures 92 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 93 

Figure 93 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 94 

 

Figure 95 

Figure 94 95 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 69% 53% 38% 13% 

Method2 14% 41% 91% 100% 

Methdo3 95% 99% 99% 99% 
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Hole: 

 

Figure 96 

Figures 96 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 97 

Figure 97 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 98 

 

Figure 99 

Figure 98 99 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and we 

can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 79% 73% 63% 49% 

Method2 14% 32% 51% 98% 

Methdo3 96% 99% 99% 99% 
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Print: 

 

Figure 100 

Figures 100 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 101 

 

Figure 101 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 102 

 

Figure 103 

Figure 102 103 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 85% 70% 62% 47% 

Method2 13% 18% 27% 82.6% 

Methdo3 83% 89% 94% 98% 

 

 

 

 



50 

 

Part 3) In this part we are going to use a bigger image for the model and for this case we 

just added convolutional layer in the beginning and the ending of the network. 

 

Figure 104 

Figure 104 shows the loss of the model we can see that as we expect the loss is decreasing 

by epochs and because we are using batches the number of steps is 
𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑆𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧
× 𝐸𝑝𝑜𝑐ℎ𝑠 that 

why we see a lot of steps in it. 

 

Figure 105 
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Figure 106 

 

Figure 107 

Figure 105 106 107 shows the 3 accuracy that we have and we mentioned every method 

for the accuracy. The accuracy is for the crack dataset. 
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 Figure 108 

 

Figure 109 

 

Figure 110 

Figures 108 109 110 show the accuracy of the model for the 3 methods that we mentioned, 

we used the cut dataset  
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Figure 111 

 

Figure 112 

 

Figure 113 

Figures 111 112 113 show the accuracy of the model for the 3 methods that we mentioned, 

we used the hole dataset 
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Figure 114 

 

Figure 115 

 

Figure 116 

Figure 114 115 116 shows the accuracy with the 3 different methods for the print dataset. 
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Crack: 

 

Figure 117 

Figures 117 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 118 

Figure 118 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 119 

 

Figure 120 

Figure 119 120 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 64% 46% 33% 11% 

Method2 40% 64% 86% 99% 

Methdo3 91% 95% 95% 94% 
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Cut: 

 

Figure 121 

Figures 121 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 122 

Figure 122 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 123 

 

Figure 124 

Figure 123 124 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 68% 56% 43% 20% 

Method2 10% 26% 71% 98% 

Methdo3 93% 98% 99% 99% 
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Hole: 

 

Figure 125 

Figures 125 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 126 

Figure 126 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 127 

 

Figure 128 

Figure 127 128 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 84% 73% 65% 54% 

Method2 12% 30% 70% 98% 

Methdo3 96% 99% 99% 99% 
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Print: 

 

Figure 129 

Figures 129 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 130 

 

Figure 130 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 131 

 

Figure 132 

Figure 131 132 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 83% 69% 62% 49% 

Method2 15% 25% 43% 76% 

Methdo3 87% 93% 97% 98% 
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Part 4) In this part we use augmentation to increase the number of data’s that we have and 

we are going to use it for our best model that we have reached so far. 

 

Figure 133 

Figure 104 shows the loss of the model we can see that as we expect the loss is decreasing 

by epochs and because we are using batches the number of steps is 
𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑆𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧
× 𝐸𝑝𝑜𝑐ℎ𝑠 that 

why we see a lot of steps in it. 

 

Figure 134 



64 

 

 

Figure 135 

 

Figure 136 

Figure 134 135 136 shows the 3 accuracy that we have and we mentioned every method 

for the accuracy. The accuracy is for the crack dataset. 
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 Figure 137 

 

Figure 138 

 

Figure 139 

Figures 137 138 139 show the accuracy of the model for the 3 methods that we mentioned, 

we used the cut dataset  
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Figure 140 

 

Figure 141 

 

Figure 142 

Figures 140 141 142 show the accuracy of the model for the 3 methods that we mentioned, 

we used the hole dataset 



67 

 

 

Figure 143 

 

Figure 144 

 

Figure 145 

Figure 143 144 145 shows the accuracy with the 3 different methods for the print dataset. 
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Crack: 

 

Figure 146 

Figures 146 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 147 

Figure 147 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 148 

 

Figure 149 

Figure 148 149 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 61% 47% 34% 12% 

Method2 34% 71% 90% 97% 

Methdo3 90% 95% 96% 94% 
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Cut: 

 

Figure 150 

Figures 150 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them 

 

Figure 151 

Figure 151 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 152 

 

Figure 153 

Figure 152 153 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 68% 53% 42% 16% 

Method2 5% 23% 47% 72% 

Methdo3 89% 98% 99% 99% 
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Hole: 

 

Figure 154 

Figures 125 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 157 

Figure 157 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 158 

 

Figure 159 

Figure 127 128 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 77% 68% 61% 17% 

Method2 5% 18% 39% 56% 

Methdo3 91% 98% 99% 99% 
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Print: 

 

Figure 160 

Figures 129 show the input and output of the model we can see that it predicts it will be 

round but it still has problems with the edges and we need to try to fix them. 

 

 

Figure 161 

 

Figure 130 shows the real mask that where the image hast problems and the network is 

supposed to find them. 
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Figure 162 

 

Figure 163 

Figure 131 132 from left to right we are using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.1, 0.15, 0.2, 0.3 for them and 

we can see the result. 

 

Accuracy/Threshold 0.1 0.15 0.2 0.3 

Method1 91% 84% 77% 77% 

Method2 15% 42% 43% 67% 

Methdo3 87% 96% 97% 98% 

 

Overall we saw the accuracy for the 3 different methods and for all the 4 ways that the 

question wanted us to do, and by using the tables we can see the accuracy for a single image 

not all the images which isn’t that much accurate but still very good to compare the result and 

see what happens and in the last there is a not that we increase the number of neurons in the 

bottle neck we increased it from 100 to 500 and that help our system why? Because when we 

are using a bigger image size data and we want to convert it to a space with 100 dimension 
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and that is hard so making it become to 500 is quite better and we got the permission from the 

TA. 

 

 

 

Process  
In this HW we learned the structure of the Alex Net DNN and we also found out the 

equation of input and output size of the data depending of the stride, kernel and padding 

size and overall saw the with having a small amount of data will result as over fitting and 

we need to augment the data so we have better generalization and we also add some other 

features to the network to see if the accuracy of the models increases or not. And the second 

part of the Homework we learned about the applications of the auto encoders that how they 

can help to predict the missing or fault parts of an image. 
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